\(\int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx\) [293]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 132 \[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=-\frac {\sqrt {b} d \arctan \left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}+\frac {\sqrt {b} d \text {arctanh}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}} \]

[Out]

-d*arctan((b*sin(f*x+e))^(1/2)/b^(1/2))*b^(1/2)*(b*tan(f*x+e))^(1/2)/f/(d*sec(f*x+e))^(1/2)/(b*sin(f*x+e))^(1/
2)+d*arctanh((b*sin(f*x+e))^(1/2)/b^(1/2))*b^(1/2)*(b*tan(f*x+e))^(1/2)/f/(d*sec(f*x+e))^(1/2)/(b*sin(f*x+e))^
(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2696, 2644, 335, 304, 209, 212} \[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\frac {\sqrt {b} d \sqrt {b \tan (e+f x)} \text {arctanh}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{f \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {\sqrt {b} d \sqrt {b \tan (e+f x)} \arctan \left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{f \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}} \]

[In]

Int[Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]],x]

[Out]

-((Sqrt[b]*d*ArcTan[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e +
 f*x]])) + (Sqrt[b]*d*ArcTanh[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x]]*Sqrt
[b*Sin[e + f*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2696

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[a^(m + n)*((b
*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n)), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (d \sqrt {b \tan (e+f x)}\right ) \int \sec (e+f x) \sqrt {b \sin (e+f x)} \, dx}{\sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}} \\ & = \frac {\left (d \sqrt {b \tan (e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{1-\frac {x^2}{b^2}} \, dx,x,b \sin (e+f x)\right )}{b f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}} \\ & = \frac {\left (2 d \sqrt {b \tan (e+f x)}\right ) \text {Subst}\left (\int \frac {x^2}{1-\frac {x^4}{b^2}} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{b f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}} \\ & = \frac {\left (b d \sqrt {b \tan (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{b-x^2} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}-\frac {\left (b d \sqrt {b \tan (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{b+x^2} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}} \\ & = -\frac {\sqrt {b} d \arctan \left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}+\frac {\sqrt {b} d \text {arctanh}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.77 \[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\frac {\left (-\arctan \left (\frac {\sqrt {\tan (e+f x)}}{\sqrt [4]{\sec ^2(e+f x)}}\right )+\text {arctanh}\left (\frac {\sqrt {\tan (e+f x)}}{\sqrt [4]{\sec ^2(e+f x)}}\right )\right ) \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}}{f \sqrt [4]{\sec ^2(e+f x)} \sqrt {\tan (e+f x)}} \]

[In]

Integrate[Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]],x]

[Out]

((-ArcTan[Sqrt[Tan[e + f*x]]/(Sec[e + f*x]^2)^(1/4)] + ArcTanh[Sqrt[Tan[e + f*x]]/(Sec[e + f*x]^2)^(1/4)])*Sqr
t[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]])/(f*(Sec[e + f*x]^2)^(1/4)*Sqrt[Tan[e + f*x]])

Maple [A] (verified)

Time = 17.51 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.98

method result size
default \(\frac {\sqrt {d \sec \left (f x +e \right )}\, \sqrt {b \tan \left (f x +e \right )}\, \left (\operatorname {arctanh}\left (\sqrt {\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )\right )+\arctan \left (\sqrt {\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )\right )\right ) \cos \left (f x +e \right )}{f \left (\cos \left (f x +e \right )+1\right ) \sqrt {\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(129\)

[In]

int((d*sec(f*x+e))^(1/2)*(b*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(d*sec(f*x+e))^(1/2)*(b*tan(f*x+e))^(1/2)*(arctanh((sin(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x
+e)))+arctan((sin(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e))))*cos(f*x+e)/(cos(f*x+e)+1)/(sin(f*x+
e)/(cos(f*x+e)+1)^2)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (108) = 216\).

Time = 0.38 (sec) , antiderivative size = 654, normalized size of antiderivative = 4.95 \[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\left [-\frac {2 \, \sqrt {-b d} \arctan \left (\frac {{\left (\cos \left (f x + e\right )^{3} - 5 \, \cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right )^{2} + 6 \, \cos \left (f x + e\right ) + 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) + 4\right )} \sqrt {-b d} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{4 \, {\left (b d \cos \left (f x + e\right )^{2} - b d - {\left (b d \cos \left (f x + e\right ) + b d\right )} \sin \left (f x + e\right )\right )}}\right ) - \sqrt {-b d} \log \left (\frac {b d \cos \left (f x + e\right )^{4} - 72 \, b d \cos \left (f x + e\right )^{2} - 8 \, {\left (7 \, \cos \left (f x + e\right )^{3} - {\left (\cos \left (f x + e\right )^{3} - 8 \, \cos \left (f x + e\right )\right )} \sin \left (f x + e\right ) - 8 \, \cos \left (f x + e\right )\right )} \sqrt {-b d} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} + 72 \, b d + 28 \, {\left (b d \cos \left (f x + e\right )^{2} - 2 \, b d\right )} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} - 2\right )} \sin \left (f x + e\right ) + 8}\right )}{8 \, f}, -\frac {2 \, \sqrt {b d} \arctan \left (\frac {{\left (\cos \left (f x + e\right )^{3} - 5 \, \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} + 6 \, \cos \left (f x + e\right ) + 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) + 4\right )} \sqrt {b d} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{4 \, {\left (b d \cos \left (f x + e\right )^{2} - b d + {\left (b d \cos \left (f x + e\right ) + b d\right )} \sin \left (f x + e\right )\right )}}\right ) - \sqrt {b d} \log \left (\frac {b d \cos \left (f x + e\right )^{4} - 72 \, b d \cos \left (f x + e\right )^{2} - 8 \, {\left (7 \, \cos \left (f x + e\right )^{3} + {\left (\cos \left (f x + e\right )^{3} - 8 \, \cos \left (f x + e\right )\right )} \sin \left (f x + e\right ) - 8 \, \cos \left (f x + e\right )\right )} \sqrt {b d} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} + 72 \, b d - 28 \, {\left (b d \cos \left (f x + e\right )^{2} - 2 \, b d\right )} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} + 4 \, {\left (\cos \left (f x + e\right )^{2} - 2\right )} \sin \left (f x + e\right ) + 8}\right )}{8 \, f}\right ] \]

[In]

integrate((d*sec(f*x+e))^(1/2)*(b*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(2*sqrt(-b*d)*arctan(1/4*(cos(f*x + e)^3 - 5*cos(f*x + e)^2 - (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*sin(
f*x + e) - 2*cos(f*x + e) + 4)*sqrt(-b*d)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))/(b*d*cos(f*x
+ e)^2 - b*d - (b*d*cos(f*x + e) + b*d)*sin(f*x + e))) - sqrt(-b*d)*log((b*d*cos(f*x + e)^4 - 72*b*d*cos(f*x +
 e)^2 - 8*(7*cos(f*x + e)^3 - (cos(f*x + e)^3 - 8*cos(f*x + e))*sin(f*x + e) - 8*cos(f*x + e))*sqrt(-b*d)*sqrt
(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e)) + 72*b*d + 28*(b*d*cos(f*x + e)^2 - 2*b*d)*sin(f*x + e))/(c
os(f*x + e)^4 - 8*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8)))/f, -1/8*(2*sqrt(b*d)*arctan(1/4*
(cos(f*x + e)^3 - 5*cos(f*x + e)^2 + (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*sin(f*x + e) - 2*cos(f*x + e) + 4)*
sqrt(b*d)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))/(b*d*cos(f*x + e)^2 - b*d + (b*d*cos(f*x + e)
 + b*d)*sin(f*x + e))) - sqrt(b*d)*log((b*d*cos(f*x + e)^4 - 72*b*d*cos(f*x + e)^2 - 8*(7*cos(f*x + e)^3 + (co
s(f*x + e)^3 - 8*cos(f*x + e))*sin(f*x + e) - 8*cos(f*x + e))*sqrt(b*d)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt
(d/cos(f*x + e)) + 72*b*d - 28*(b*d*cos(f*x + e)^2 - 2*b*d)*sin(f*x + e))/(cos(f*x + e)^4 - 8*cos(f*x + e)^2 +
 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8)))/f]

Sympy [F]

\[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\int \sqrt {b \tan {\left (e + f x \right )}} \sqrt {d \sec {\left (e + f x \right )}}\, dx \]

[In]

integrate((d*sec(f*x+e))**(1/2)*(b*tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(b*tan(e + f*x))*sqrt(d*sec(e + f*x)), x)

Maxima [F]

\[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\int { \sqrt {d \sec \left (f x + e\right )} \sqrt {b \tan \left (f x + e\right )} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(1/2)*(b*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*sec(f*x + e))*sqrt(b*tan(f*x + e)), x)

Giac [F]

\[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\int { \sqrt {d \sec \left (f x + e\right )} \sqrt {b \tan \left (f x + e\right )} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(1/2)*(b*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*sec(f*x + e))*sqrt(b*tan(f*x + e)), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)} \, dx=\int \sqrt {b\,\mathrm {tan}\left (e+f\,x\right )}\,\sqrt {\frac {d}{\cos \left (e+f\,x\right )}} \,d x \]

[In]

int((b*tan(e + f*x))^(1/2)*(d/cos(e + f*x))^(1/2),x)

[Out]

int((b*tan(e + f*x))^(1/2)*(d/cos(e + f*x))^(1/2), x)